

China Unveils Five-Year Space Strategy: Behind What Beijing is Building and Why it Matters

February 3, 2026

On 29 January 2026, China formally unveiled its next five-year roadmap for its space sector. Led by the China Aerospace Science and Technology Corporation (“CASC”), the plan sets out a coordinated national strategy spanning space tourism, orbital digital infrastructure, satellite megaconstellations, deep-space exploration, and space resource development.

Unlike earlier plans that focused primarily on launch capability and national missions, this roadmap is explicitly commercial. It reflects Beijing’s shift from building space access toward designing a full space economy, integrating transportation, data, communications, computing, and long-term off-Earth operations into a single industrial system.

Below is what China is planning over the next five years and what it means for operators, investors, and governments.

Space Tourism as a Regulated Market

China placed space tourism directly inside its national development framework, committing to achieve operational suborbital tourism within the five-year window, followed by a phased transition toward orbital passenger services.

This matters more for what it enables structurally. Human-rated vehicles drive reusable launch systems, crew safety standards, insurance markets, ground infrastructure, and regulatory frameworks for commercial human spaceflight. By

incorporating tourism into state planning, China is signaling that these enabling layers will be built in parallel.

Several Chinese startups are already developing suborbital vehicles, but CASC's endorsement elevates tourism from speculative private activity to state-supported industry. The practical outcome will likely be accelerated certification pathways, coordinated launch infrastructure, and easier access to capital. In effect, tourism becomes the catalyst for a broader commercial ecosystem.

For international operators, this introduces a new state-backed competitor in a market previously dominated by Western firms.

Space-Based Computing and AI

The most strategically significant element of the announcement is China's commitment to develop space-based digital infrastructure, including orbital data processing and AI platforms.

These systems envision satellites performing compute-intensive tasks directly in orbit, forming a space-based cloud layer powered by continuous solar exposure and unconstrained by terrestrial energy grids. Rather than downlinking raw data to Earth for processing, China aims to analyze imagery, communications, and sensor outputs in space before transmitting refined products to ground users.

This architecture reshapes the economics of Earth observation, secure communications, autonomous navigation, and defense-adjacent analytics. It also introduces sovereign digital environments beyond traditional jurisdictional boundaries.

Western companies have discussed similar concepts, including SpaceX through its broader constellation strategy, but China is now embedding orbital computing directly into national industrial planning. Over the next five years, this is likely

to drive large-scale satellite deployment, new spectrum requirements, and accelerated development of space-qualified processors and networking systems.

For regulators and operators alike, orbital computing raises unresolved issues around cybersecurity, liability, data governance, and congestion management.

Deep Space Capability and Talent Development

China is also expanding its deep space ambitions. Just days before the announcement, the University of the Chinese Academy of Sciences launched a School of Space Exploration focused on advanced propulsion, trajectory modeling, and long-range mission design.

This move institutionalizes deep-space expertise inside China's technical pipeline, ensuring a steady flow of engineers trained for lunar operations, autonomous spacecraft, and eventual interplanetary missions. The five-year plan frames the coming decade as a window for leapfrog development in deep-space technologies, linking talent cultivation directly to national exploration objectives.

Practically, this supports sustained lunar activity, robotic surface missions, and future crewed operations beyond low Earth orbit, all backed by a growing domestic workforce specialized in space disciplines.

Satellite Megaconstellations and Orbital Real Estate

China's roadmap also reinforces its aggressive push into large satellite constellations.

Chinese entities have filed extensive applications with the International Telecommunication Union to reserve spectrum and orbital slots for future systems numbering in the hundreds of thousands over the coming decade. These filings secure scarce orbital resources while positioning China to compete directly

with existing broadband constellations. Control over spectrum and orbital slots determines who can deploy at scale, who faces interference constraints, and who shapes future standards. China is acting early to lock in access, ensuring its operators retain strategic flexibility as orbital traffic intensifies.

For existing constellation operators, this signals tighter competition for spectrum coordination and growing geopolitical complexity in ITU processes.

Space Resources and the Groundwork for Off-Earth Utilization

While less detailed publicly, the five-year framework references space resource development as part of China's medium-term objectives. This points toward future lunar utilization architectures, including in-situ resource extraction, surface logistics, and energy generation.

Resource development is being planned alongside launch systems, robotics, navigation, and power infrastructure, indicating a long-term vision for sustained off-Earth presence rather than isolated exploration missions.

Over time, this approach supports permanent lunar operations and potential cis-lunar industrial activity.

What This Means

Taken together, China's five-year plan represents a transition from space capability to space ecosystem design.

Tourism accelerates human-rated vehicles. Orbital computing drives constellation growth. Megaconstellations justify launch cadence. Deep-space programs advance propulsion and autonomy. Resource utilization supports permanent operations. Each pillar reinforces the others, forming a vertically integrated strategy for space commerce.

This contrasts with the Western model, where commercial

development remains spread across agencies, regulators, and private operators. China is synchronizing state capital, industrial policy, education, and orbital planning into a unified framework.

For commercial actors, this reshapes competitive assumptions across tourism, satellite services, and space-based data markets.

For governments, it underscores the urgency of spectrum diplomacy, regulatory coherence, and international norms governing orbital infrastructure and space-based computing.

For everyone else, whether in the space industry or otherwise, it signals that by 2030 the world will be operating within an unprecedented, fully globalized space economy.

Author: Abdulla Abuwasel

Title: Partner – Transactions

Email: awasel@waselandwasel.com

Profile:

<https://waselandwasel.com/about/abdulla-abuwasel/>

Lawyers and consultants.

Tier-1 services since 1799.

www.waselandwasel.com

business@waselandwasel.com